
UNCLASSIFIED 
 

UNCLASSIFIED 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

September 2021 

Version 2.1 
 
 

This document automatically expires 1-year from publication date unless revised. 

 
 

Unclassified 

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.  

DevSecOps Playbook 
 

Unclassified 

dkluzik
Cleared



UNCLASSIFIED 
 

UNCLASSIFIED 

Trademark Information 
Names, products, and services referenced within this document may be the trade names, 
trademarks, or service marks of their respective owners. References to commercial vendors and 
their products or services are provided strictly as a convenience to our readers, and do not 
constitute or imply endorsement by the Department of any non-Federal entity, event, product, 
service, or enterprise



 UNCLASSIFIED 
 

 

 

3 
UNCLASSIFIED 

Contents 
Play 1: Adopt a DevSecOps Culture .................................................................................................................. 4 

Key Cultural Practices .................................................................................................................................... 4 
Checklist ........................................................................................................................................................ 4 

Play 2: Adopt Infrastructure as Code ................................................................................................................. 5 
Key Advantages ............................................................................................................................................. 5 
Checklist ........................................................................................................................................................ 5 

Play 3: Adopt Containerized Microservices ........................................................................................................ 6 
Key Characteristics of a Containerized Microservice ...................................................................................... 6 
Checklist ........................................................................................................................................................ 6 

Play 4: Adopt a Capability Model, not a Maturity Model ..................................................................................... 7 
Checklist ........................................................................................................................................................ 7 

Play 5: Drive Continuous Improvement through Key Capabilities ...................................................................... 8 
Checklist ........................................................................................................................................................ 8 

Play 6: Establish a Software Factory ................................................................................................................. 9 
Checklist ........................................................................................................................................................ 9 

Play 7: Define a Meaningful DevSecOps Pipeline ............................................................................................ 10 
Checklist ...................................................................................................................................................... 10 

Play 8: Adapt an Agile Acquisition Policy for Software ..................................................................................... 11 
Checklist ...................................................................................................................................................... 11 

Play 9: Tirelessly Pursue Cyber Resilience ...................................................................................................... 12 
Checklist ...................................................................................................................................................... 12 

Play 10: Shift Test and Evaluation (T&E) Left into the Pipeline ........................................................................ 13 
Common Testing Categories ........................................................................................................................ 13 
Checklist ...................................................................................................................................................... 13 

Play 11: (Industry) Lean, User-Centered, Agile Practices & Workshops .......................................................... 14 
Collection of Lean, User-Centered, Agile Practices and Workshops ............................................................ 14 
Popular Topics Related to Modern App Development .................................................................................. 14 

 

  



 UNCLASSIFIED 
 

 

 

4 
UNCLASSIFIED 

Play 1: Adopt a DevSecOps Culture 
DevSecOps is a software engineering culture that guides a team to break down silos and unify software 
development, deployment, security and operations. Critical to the success of DevSecOps adoption is buy-in 
from all stakeholders, including: leadership, acquisition, contracting, middle-management, engineering, 
security, operations, development, and testing teams. Stakeholders across the organization must change their 
way of thinking from “I” to “we”, while breaking team silos, and understanding that the failure to successfully 
deliver, maintain, and continuously engineer software and its underlying infrastructure is the failure of the entire 
organization, not one specific team or individual. 

Before beginning a DevSecOps journey, it is imperative to understand that a successful implementation of 
DevSecOps cannot be measured by a completely automated pipeline or the interaction between development 
and operations teams alone; all stakeholders in the organization must be committed to changing the way they 
view their job responsibilities and, most importantly, interact with each other. 

Key Cultural Practices 
• Stakeholder transparency and visibility. 
• Complete transparency across team members in real-time. 
• All project resources easily accessible to the entire team; not everyone needs commit privileges. 
• Adopt and embrace ChatOps as the communication backbone for the DevSecOps team. 
• All technical staff should be concerned with, and have a say in, baked-in security. 

Checklist 
 Learn what is involved in the DevSecOps culture. 
 Embrace automation for anything done repeatedly. 
 Read How to Build a Strong DevSecOps Culture by K. Casey, available online at: 

https://enterprisersproject.com/article/2018/6/how-build-strong-devsecops-culture-5-tips 
 Read The Phoenix Project: A Novel about IT, DevOps, and Helping Your Business Win by G. Kim, K. 

Behr, and G. Spafford, IT Revolution Press, Jan. 10, 2013 
 Fail fast, learn fast, fail small, and do not fail twice for the same reason! 

 

  

https://enterprisersproject.com/article/2018/6/how-build-strong-devsecops-culture-5-tips


 UNCLASSIFIED 
 

 

 

5 
UNCLASSIFIED 

Play 2: Adopt Infrastructure as Code 
Infrastructure as Code (IaC) is infrastructure definition and configuration that is defined with text files that are 
checked-in to a source code repository and kept under configuration management. It includes the management 
of networks, storage, virtual machines, load balancers, and even connection topologies. IaC evolved to solve a 
real-world problem referred to as environment drift in the release pipeline. Succinctly, the development 
environment fails to align with the production environment configuration. The goal is to automate all 
infrastructure provisioning and configuration in a repeatable, consistent way that also lends itself to peer 
reviews of the changes prior to any configuration changes actually being made. 

IaC can take many forms. One is a template for instantiating a cloud service in a secure way. Another is 
through configuration files or scripts. It is important to consider vendor lock-in versus product lock-in when 
selecting technology or IaC formats. Blueprints and Cloud Formation only apply to Microsoft Azure and 
Amazon Web Services (AWS) respectively, creating a degree of vendor lock-in; Cloud-agnostic solutions, such 
as those provided by popular tools like Ansible and Terraform, avoid vendor lock-in but create product lock-in. 
In all cases, the IaC is specified via one or more text files. 

GitOps is a paradigm where systems are described and observed declaratively, using code to specify the 
desired state. The benefits of GitOps build upon IaC, emphasizing the role of git and a git driven workflow. IaC 
is one of the three core practices of GitOps, along with merge requests and the reliance upon a CI/CD pipeline. 

Key Advantages 
• IT infrastructure supports and enables change, rather than being an obstacle or a constraint. 
• Mitigates drift between environments by leveraging automation and push-button deployment. 
• Enforces change management through GitOps with multiple approvers, as needed. 
• Environmental changes are routine and fully automated, pivoting staff to focus on other tasks. 
• Quicker recovery from failures, rather than assuming failure can be completely prevented. 
• Empowers a continuous improvement ecosystem rather than “big bang” one and done activities. 

Checklist 
 Learn how to describe the value proposition of IaC. 
 Understand the benefits of applying GitOps to infrastructure configurations. 
 Understand how IaC tooling selection is a trade-off between vendor lock-in or product lock-in. 
 Explore popular IaC tooling options, including: 

– Terraform 
– Ansible 
– Chef 
– CSP managed service tooling 

  



 UNCLASSIFIED 
 

 

 

6 
UNCLASSIFIED 

Play 3: Adopt Containerized Microservices 
A modular open system approach (MOSA) is an acquisition and design strategy consisting of a technical 
architecture that adopts open standards and supports a modular, loosely coupled and highly cohesive system 
structure.1 U.S. Code Title 10 Section 2446a, and DoD Instruction 5000.02 require MOSA. A modern software 
architecture predicated upon microservices and software containers meet MOSA requirements. 

A container is a lightweight, standalone, executable package of software that includes everything needed to 
run a business service except the OS; code, runtime, system tools, system libraries and settings. Containers 
run in isolated processes from one another, so several containers can run in the same host OS without 
conflicting with one another. All containers must be Open Container Initiative compliant.2 The DoD DevSecOps 
Strategy requires a CNCF Certified Kubernetes cluster for container orchestration; there over 90 Certified 
Kubernetes implementations and counting.3 

A microservice architecture is an approach to application development where discrete, modular business 
services are bundled inside of a software container. These business services are then loosely coupled and 
rapidly composed using lightweight protocols. The primary functional benefit of this approach when executed 
properly is that each service can advance independently from the other services. Numerous non-functional 
benefits also exist, including more agility in scaling to demand, multiple upgrade options that don’t impact the 
user population, more precise cyber hardening at a per-service level, and inherent support for failure and 
recovery. 

Key Characteristics of a Containerized Microservice 
• Componentization via services. 
• Organized around business capabilities. 
• Product over project. 
• Smart endpoints, dumb pipes. 
• Decentralized governance and data management. 
• Infrastructure automation support via IaC. 
• Design for failure. 
• Evolutionary design support. 

Checklist 
 Research and understand the benefits of a microservices architecture. 
 Only adopt CNCF Certified Kubernetes to ensure software conformance of required APIs. 
 Leverage Iron Bank for hardened containers and other software artifacts. 
 Always inject the Sidecar Container Security Stack (SCSS) to maximize runtime security. 
 Always adopt a service mesh to further secure east-west network traffic. 

                                                
1 Defense Acquisition University, “MOSA Defense Acquisition Guidebook, Ch 3-2.4.1.” [Online]. Available: 
https://www.dau.edu/guidebooks/Shared%20Documents%20HTML/Chapter%203%20Systems%20Engineering.aspx#toc
20  
2 The Linux Foundation Projects, “Open Container Initiative,” [Online] Available at: https://opencontainers.org.  
3 Cloud Native Computing Foundation, “Software Conformance,” [Online] Available at: 
https://www.cncf.io/certification/software-conformance/ 



 UNCLASSIFIED 
 

 

 

7 
UNCLASSIFIED 

Play 4: Adopt a Capability Model, not a Maturity Model 
Google’s DORA research program advocates that rather than use a maturity model, research shows that a 
capability model is a better way to both encourage and measure performance improvement.4,5 Multiple studies 
have shown that four key metrics support software development and delivery performance.6 The two 
categories are tempo metrics and stability metrics. Under tempo, measure the deployment frequency and the 
lead time from commit to production deployment. Under stability, measure the mean time to recover from 
downtime or mean time to restore (MTTR) and the change failure rate (or percentage).  

 

Metric 
High 
Performers 

Medium 
Performers 

Low 
Performers 

Deployment frequency – How often the 
organization deploys code. 

One demand 
(multiple deploys per 
day) 

Between once per 
week and once 
per month 

Between once per 
week and once 
per month 

Change lead time – Time it takes to go 
from code commit to code successfully 
running in production. 

Less than one hour Between one 
week and one 
month 

Between one 
week and one 
month 

Mean time to recover (MTTR) – Time it 
takes to restore service when a service 
incident occurs (e.g., unplanned outage, 
service impairment). 

Less than one hour Less than one day Between one day 
and one week 

Change failure rate – Percentage of 
changes that results in either degraded 
service or requires remediation (e.g., 
leads to service impairment, service 
outage, requires a hotfix, rollback, patch, 
etc.) 

0-15% 0-15% 31-45% 

 

Checklist 
 Become fluent with the four key metrics: deployment frequency, lead time, MTTR, and change failure 

rate. 
 Evaluate your project and organization on each metric to measure DevSecOps capability progress. 
 Continuously strive to improve each metric through process and automation improvements. 
 Read The DevOps Handbook and learn The Three Ways7 

                                                
4 Google Cloud, “Explore DORA’s research program,” [Online]. Available at: https://www.devops-
research.com/research.html. 
5 N. Forsgren, J. Humble, G. Kim, and, “Accelerate: The Science of Lean Software and DevOps: Building and Scaling 
High Performing Technology Organizations.” 2018. 
6 DevOps Research and Assessment (DORA), “Accelerate: State of DevOps 2019.” 2019, [Online]. Available at: 
https://services.google.com/fh/files/misc/state-of-devops-2019.pdf 
7 G. Kim, J. Humble, P. Debois, and J. Willis, “The DevOps Handbook: How to Create World-Class Agility, Reliability, and 
Security in Technology Organizations.” IT Revolution Press, Oct. 06, 2016. 



 UNCLASSIFIED 
 

 

 

8 
UNCLASSIFIED 

Play 5: Drive Continuous Improvement through Key Capabilities 
There are 24 key capabilities that drive improvements across both the DevSecOps team and its organization.8 
The capabilities are organized into five broad categories: Continuous Delivery, Architecture, Product and 
Process, Lean Management & Monitoring, and Cultural. Cultural change is often the hardest thing to 
address. The 24 key capabilities include: 

 

Checklist 
 Read Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing 

Technology Organizations. 
 Pay special attention to driving the cultural changes necessary for successful transformation. 

 

 
 

                                                
8 N. Forsgren, J. Humble, G. Kim, and, “Accelerate: The Science of Lean Software and DevOps: Building and Scaling 
High Performing Technology Organizations.” 2018. 



 UNCLASSIFIED 
 

 

 

9 
UNCLASSIFIED 

Play 6: Establish a Software Factory 
All custom software development should be driven through the software factory construct using DevSecOps. 
There are several ways to instantiate a DoD DevSecOps Software Factory / Platform. At this time, the option 
with the least friction is to use the DoD-approved DevSecOps Managed Service Provider (MSP), Platform One. 
Platform One is operated as an authorized-to-use Platform with integrated continuous authorization to operate 
(cATO) practices. It leverages several enterprise-class services, including Iron Bank as a recognized DoD 
hardened artifact repository and Repo One for source code management. 

Another option is to establish a software factory using a Cloud Service Provider (CSP) with a DoD ATO or 
Provisional Authorization (PA). Leverage the CSP’s managed services, ideally through IaC practices, to 
establish a DevSecOps Software Factory.  Figure 1 illustrates the key phases of building a software factory: 

 

  

Figure 1 Software Factory Lifecycle Phases 

Checklist 
 Recognize that a software factory must align to the DoD Enterprise DevSecOps Strategy, comply 

with all required DevSecOps Tools and Activities Guidebook, and clearly identify its interconnects 
between the various layers, as defined within the DevSecOps Fundamentals document. 

 Software factories are inherently designed to be multi-tenet, and they are expensive to build and 
operate; establish clear reasons why a new factory is required over adopting an existing factory. 



 UNCLASSIFIED 
 

 

 

10 
UNCLASSIFIED 

Play 7: Define a Meaningful DevSecOps Pipeline 
Each software factory executes multiple DevSecOps Pipelines, where a pipeline is analogous to a 
manufacturing assembly line. Each pipeline is dedicated to a specific process uniquely tailored for the artifact 
being produced. There are no one size fits all solutions for cybersecurity testing. Therefore, every DevSecOps 
pipeline is a collection of process workflows and scripts running on a set of DevSecOps tools operating in 
unison with their associated software factory. The design of each pipeline must clearly identify the process 
flows and automation activities across the various DevSecOps stages, depicted below in Figure 2. 

 

 

  

Figure 2 Unpacked DevSecOps infinity loop showing continuous feedback loops 

Checklist 
 Read DoD Enterprise DevSecOps Fundamentals document.  
 Read DevSecOps Tools and Activities Guidebook. 
 Define a software lifecycle within the pipeline that uses management processes that meets the unique 

needs of the mission environment, system complexity, system architecture, software design choices, 
risk tolerance level, and system maturity level. 

 Do not try to implement the pipeline using a “big bang” approach – start small, iterate, automate 
repetitive processes. 

 Recognize the value of the continuous feedback loops across the software lifecycle phases. 
 Work closely with the AO to understand precisely what each control gate must validate before an 

artifact can be promoted to the next lifecycle phase. 
 Measure capabilities across each of the lifecycle phases. 



 UNCLASSIFIED 
 

 

 

11 
UNCLASSIFIED 

Play 8: Adapt an Agile Acquisition Policy for Software 
The Office of Acquisition Enablers (AE) is a new organization within the Office of the Under Secretary of 
Defense for Acquisition & Sustainment (A&S). The office is the lead for enabling innovative acquisition 
approaches that deliver warfighting capability at the speed of relevance. DoD Instruction 5000.02, Operation of 
the Adaptive Acquisition Framework, restructures defense acquisition guidance to improve process 
effectiveness and implement the Adaptive Acquisition Framework.9 As part of this framework, DoD Instruction 
5000.87, Operation of the Software Acquisition Pathway, became effective October 2, 2020.10 The 5000.87 
instruction: 

• Establishes the Software Acquisition Pathway as the preferred path for acquisition and development of 
software-intensive systems. 

• Simplifies the acquisition model to enable continuous integration and delivery of software capability on 
timelines relevant to the warfighter/end user. 

• Establishes business decision artifacts to manage risk and enable successful software acquisition and 
development. 

Defense Acquisition University (DAU) provides training in the form of an interactive web application that 
educates the audience specifically on the Software Acquisition Pathway, where agile software acquisition 
processes are discussed in the context of acquisition personnel. For more information:  
https://aaf.dau.edu/aaf/software/ 

Checklist 
 Review DoDI 8000.87 to understand the formal definition of what constitutes a “software-intensive” 

system. 
 Review the DIB SWAP study’s key findings.11 
 Review the acquisition guidance in the TechFAR hub, https://techfarhub.cio.gov/. 
 Recognize that the software can be acquired via DoDI 8000.87, while other program elements can be 

acquired through different pathways. 
 Leverage Enterprise Level Services as a first choice, if available, before creating unique services. 
 Ensure your acquisition plan recognizes that technology enhancements never end. 
 Do not lock technical requirements into legal contracts; enable new technologies. 

 

 
 

                                                
9 Office of the Under Secretary of Defense for Acquisition and Sustainment, “DoD Instruction 5000.02, Operation of the 
Adaptive Acquisition Framework.” Jan. 23, 2020, [Online]. Available: 
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-23-144114-093. 
10 Office of the Under Secretary of Defense for Acquisition and Sustainment, “DoD Instruction 5000.87, Operation of the 
Software Acquisition Pathway.” Oct. 20, 2020, [Online]. Available: 
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3
D.  
11 Defense Innovation Board (DIB), “Software Acquisition and Practices (SWAP) Study.” May 03, 2019, [Online]. 
Available: https://innovation.defense.gov/software. 

https://aaf.dau.edu/aaf/software/
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500002p.pdf?ver=2020-01-23-144114-093
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3D
https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/500087p.PDF?ver=virAfQj4v_LgN1JxpB_dpA%3D%3D


 UNCLASSIFIED 
 

 

 

12 
UNCLASSIFIED 

Play 9: Tirelessly Pursue Cyber Resilience 
Cyber Resilience is “the ability to anticipate, withstand, recover from, and adapt to adverse conditions, 
stresses, attacks, or compromises on the systems that include cyber resources.”12 A primary goal of 
DevSecOps adoption is to “bake-in” cyber resiliency into applications as part of the software factory’s 
DevSecOps pipeline process.  

Cybersecurity touches each of the eight phases of the DevSecOps lifecycle, and the various control gates 
serve as Go/No-Go decision points. As discussed in Play 7: Define a Meaningful DevSecOps Pipeline, the 
precise set of testing and processes will vary from pipeline to pipeline. However, all pipelines must use these 
control gates to ensure that cybersecurity is both “baked in” and transparently identified. Culturally, the AO and 
their staff must pivot from relying on post-process paperwork evaluations to near real-time continuous 
monitoring of both the software factory’s pipelines and the production environment performance metrics. 

Moving to DevSecOps includes moving towards a Continuous Authorization to Operate (cATO) for an 
application developed using DevSecOps processes, including a software factory with a CI/CD pipeline. cATO 
is equivalent to an ongoing authorization as defined in NIST 800-137, and it is fundamentally related to the 
ongoing understanding and acceptance of security and privacy risk.13 Every cATO is centered around a 
transparently defined and well-understood continuous monitoring program. 

A separate guidebook on cATO is forthcoming; it centers around assessment and authorization of the platform, 
assessment and authorization of the process (including continuous monitoring), and finally, assessment and 
authorization of the team.  

Checklist 
 Do not use Fast Track Authority to Operate for software produced by a DevSecOps software factory 

CI/CD pipeline. 
 Pursue cyber resilience at each phase of the DevSecOps lifecycle. 
 Understand Recommendation B6, “Shift from certification of executables for low- and medium-risk 

deployments to certification of code/architectures and certification of the development, integration, and 
deployment toolchain.”11 

 Establish a continuous monitoring program. 
 Partner with your AO and help them move to near real-time metrics dashboard. 

 

 

 

 

                                                
12 R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuiad, “NIST Special Publication 800-160 Volume 2, 
Developing Cyber Resilient Systems: A Systems Security Engineering Approach.” 2019–Nov., [Online]. Available: 
https://doi.org/10.6028/NIST.SP.800-160v2.  
13 National Institute of Standards and Technology, “Risk Management Framework for Information Systems and 
Organizations: A System Life Cycle Approach for Security and Privacy (SP 800-37 Rev. 2).” Dec. 2018, [Online]. 
Available: https://csrc.nist.gov/publications/detail/sp/800-37/rev-2/final.  

https://doi.org/10.6028/NIST.SP.800-160v2
https://csrc.nist.gov/publications/detail/sp/800-37/rev-2/final


 UNCLASSIFIED 
 

 

 

13 
UNCLASSIFIED 

Play 10: Shift Test and Evaluation (T&E) Left into the Pipeline 
The Defense Innovation Board succinctly summed the goal of this play like this: “Speed and cycle time are the 
most important metrics for managing software. DoD must be able to deploy software faster without sacrificing 
its abilities to test and validate software.”11 

Developmental Test and Evaluation (DT&E) and Operational Test and Evaluation (OT&E) activities are 
intended to gather data that helps leadership make informed decisions. The value of shifting test and 
evaluation activities into the software factory’s pipeline is that risk is reduced by finding problems early and 
fixing them fast while the change that created the problem is still in the forefront of the developer’s mind. 
Integration continues to be difficult to achieve between disparate systems, and the push for access to raw data 
to feed AI/ML algorithms is increasing, not decreasing. The ability to ensure these integrations work earlier in 
the process, not as a bolt-on after-the-fact integration, drives the delivery of relevant software at the speed of 
operations. 

Tests must be planned, and the need for testing activities is formally identified within the DoDI 5000.87 and 
DoDI 5000.89.10 Testers should receive formal training in both Agile and DevSecOps to ensure they are fully 
integrated team members. Further, the DevSecOps culture emphasizes that everyone is responsible for testing 
and quality regardless of team position or job title. The test plan must plan and identify the metrics that best 
reflect functional and non-functional requirements and how the metrics will be collected in an automated 
fashion, respectively. Lastly, and most importantly, the end user or their representative must be closely 
involved in all aspects of testing and acceptance of an artifact as it transitions through the CI/CD pipeline. 

Common Testing Categories 
• Unit and Functional Testing. 
• Integration Testing. 
• Performance Testing. 
• Interoperability Testing. 
• Deployment Testing (normally conducted in a dev, test, or integration environment). 
• Operational Testing (normally conducted in a pre-production or production environment). 
• Static Application Security Testing (SAST). 
• Dynamic Application Security Testing (DAST). 
• Interactive Application Security testing (IAST). 
• Runtime Application Self-Protection (RASP). 
• Cybersecurity Test and Evaluation (see DoD Cybersecurity Test and Evaluation Guidebook) 

Checklist 
 Start all T&E planning at the inception of the program to influence strategy, requirements, RFPs, etc. 
 Establish the plan to automate the collection of test data metrics in the first sprint. 
 Incessantly work to compress test reporting timelines as much as possible to speed corrections. 
 Include operational users in both Developmental and Operational Testing. 
 Incorporate all forms of Application Security Testing in the pipeline to ensure cyber resilience. 
 Consider functional, non-functional, and cyber testing at each of the eight phases of the DevSecOps 

lifecycle. 

  



 UNCLASSIFIED 
 

 

 

14 
UNCLASSIFIED 

Play 11: (Industry) Lean, User-Centered, Agile Practices & Workshops 
 

 

 

Tanzu Labs has assembled a collection of guides and playbooks for topics like Spring, Kubernetes, 
Containers, Microservices, Python, CI/CD, etc. They have also developed a collection of lean, user-centered, 
agile practices and workshops for modern software application development. This material is used to build 
Tanzu software as well as teach other software developers how to build their own modern software 
applications. 

These guides and playbooks are open source and available at the Tanzu Developer Center at the URLs 
indicated below. 

 

 

Collection of Lean, User-Centered, Agile Practices and Workshops 
• https://tanzu.vmware.com/developer/practices/ 

Popular Topics Related to Modern App Development 
• https://tanzu.vmware.com/developer/topics/ 


	Play 1: Adopt a DevSecOps Culture
	Key Cultural Practices
	Checklist

	Play 2: Adopt Infrastructure as Code
	Key Advantages
	Checklist

	Play 3: Adopt Containerized Microservices
	Key Characteristics of a Containerized Microservice
	Checklist

	Play 4: Adopt a Capability Model, not a Maturity Model
	Checklist

	Play 5: Drive Continuous Improvement through Key Capabilities
	Checklist

	Play 6: Establish a Software Factory
	Checklist

	Play 7: Define a Meaningful DevSecOps Pipeline
	Checklist

	Play 8: Adapt an Agile Acquisition Policy for Software
	Checklist

	Play 9: Tirelessly Pursue Cyber Resilience
	Checklist

	Play 10: Shift Test and Evaluation (T&E) Left into the Pipeline
	Common Testing Categories
	Checklist

	Play 11: (Industry) Lean, User-Centered, Agile Practices & Workshops
	Collection of Lean, User-Centered, Agile Practices and Workshops
	Popular Topics Related to Modern App Development





Accessibility Report





		Filename: 

		N-120 min-DevSecOps Playbook_DoD-CIO_20211019.pdf









		Report created by: 

		Marilyn Anderson, Section 508 Policy Compliance



		Organization: 

		DOD CIO







 [Personal and organization information from the Preferences > Identity dialog.]



Summary



The checker found no problems in this document.





		Needs manual check: 0



		Passed manually: 2



		Failed manually: 0



		Skipped: 3



		Passed: 27



		Failed: 0







Detailed Report





		Document





		Rule Name		Status		Description



		Accessibility permission flag		Passed		Accessibility permission flag must be set



		Image-only PDF		Passed		Document is not image-only PDF



		Tagged PDF		Passed		Document is tagged PDF



		Logical Reading Order		Passed manually		Document structure provides a logical reading order



		Primary language		Passed		Text language is specified



		Title		Passed		Document title is showing in title bar



		Bookmarks		Passed		Bookmarks are present in large documents



		Color contrast		Passed manually		Document has appropriate color contrast



		Page Content





		Rule Name		Status		Description



		Tagged content		Passed		All page content is tagged



		Tagged annotations		Skipped		All annotations are tagged



		Tab order		Passed		Tab order is consistent with structure order



		Character encoding		Passed		Reliable character encoding is provided



		Tagged multimedia		Passed		All multimedia objects are tagged



		Screen flicker		Passed		Page will not cause screen flicker



		Scripts		Passed		No inaccessible scripts



		Timed responses		Passed		Page does not require timed responses



		Navigation links		Passed		Navigation links are not repetitive



		Forms





		Rule Name		Status		Description



		Tagged form fields		Passed		All form fields are tagged



		Field descriptions		Passed		All form fields have description



		Alternate Text





		Rule Name		Status		Description



		Figures alternate text		Passed		Figures require alternate text



		Nested alternate text		Passed		Alternate text that will never be read



		Associated with content		Passed		Alternate text must be associated with some content



		Hides annotation		Passed		Alternate text should not hide annotation



		Other elements alternate text		Passed		Other elements that require alternate text



		Tables





		Rule Name		Status		Description



		Rows		Passed		TR must be a child of Table, THead, TBody, or TFoot



		TH and TD		Passed		TH and TD must be children of TR



		Headers		Skipped		Tables should have headers



		Regularity		Passed		Tables must contain the same number of columns in each row and rows in each column



		Summary		Skipped		Tables must have a summary



		Lists





		Rule Name		Status		Description



		List items		Passed		LI must be a child of L



		Lbl and LBody		Passed		Lbl and LBody must be children of LI



		Headings





		Rule Name		Status		Description



		Appropriate nesting		Passed		Appropriate nesting










Back to Top



